Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1083399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993814

RESUMO

Poly (vinyl chloride) (PVC) is commonly used to manufacture biomedical devices and hospital components, but it does not present antimicrobial activity enough to prevent biofouling. With the emergence of new microorganisms and viruses, such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that was responsible for the global pandemic caused by Coronavirus Disease 2019 (COVID-19), it is evident the importance of the development of self-disinfectant PVC for hospital environments and medical clinics where infected people remain for a long time. In this contribution, PVC nanocomposites with silver nanoparticles (AgNPs) were prepared in the molten state. AgNPs are well-known as antimicrobial agents suitable for designing antimicrobial polymer nanocomposites. Adding 0.1 to 0.5 wt% AgNPs significantly reduced Young's modulus and ultimate tensile strength of PVC due to the emergence of microstructural defects in the PVC/AgNP nanocomposites, but the impact strength did not change significantly. Furthermore, nanocomposites have a higher yellowness index (YI) and lower optical bandgap values than PVC. The PVC/AgNP nanocomposites present virucidal activity against SARS-CoV-2 (B.1.1.28 strain) within 48 h when the AgNP content is at least 0.3 wt%, suitable for manufacturing furniture and hospital equipment with self-disinfectant capacity to avoid secondary routes of COVID-19 contagion.

2.
Pharmaceutics ; 13(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199551

RESUMO

Polymeric implants loaded with drugs can overcome the disadvantages of oral or injection drug administration and deliver the drug locally. Several methods can load drugs into polymers. Herein, soaking and supercritical CO2 (scCO2) impregnation methods were employed to load aspirin into poly(l-lactic acid) (PLLA) and linear low-density polyethylene (LLDPE). Higher drug loadings (DL) were achieved with scCO2 impregnation compared to soaking and in a shorter time (3.4 ± 0.8 vs. 1.3 ± 0.4% for PLLA; and 0.4 ± 0.5 vs. 0.6 ± 0.5% for LLDPE), due to the higher swelling capacity of CO2. The higher affinity of aspirin explained the higher DL in PLLA than in LLDPE. Residual solvent was detected in LLDPE prepared by soaking, but within the FDA concentration limits. The solvents used in both methods acted as plasticizers and increased PLLA crystallinity. PLLA impregnated with aspirin exhibited faster hydrolysis in vitro due to the catalytic effect of aspirin. Finally, PLLA impregnated by soaking showed a burst release because of aspirin crystals on the PLLA surface, and released 100% of aspirin within 60 days, whereas the PLLA prepared with scCO2 released 60% after 74 days by diffusion and PLLA erosion. Hence, the scCO2 impregnation method is adequate for higher aspirin loadings and prolonged drug release.

3.
Soft Matter ; 17(17): 4475-4488, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33903866

RESUMO

Hexagonal boron nitride (h-BN) nanostructures are well-known for their good chemical stability, thermal conductivity and high elastic modulus. BN can be used as a filler in hydrogels to significantly improve their mechanical and thermal properties, to reinforce their biocompatibility and to provide self-healing capacity. Moreover, in contrast with their carbon equivalents, BN nanocomposites are transparent and electrically insulating. Herein, we present an overview of BN-based nanocomposite hydrogels. First, the properties of h-BN are described, as well as common exfoliation and functionalization techniques employed to obtain BN nanosheets. Then, methods for preparing BN-nanocomposite hydrogels are explained, followed by a specific overview of the relationship between the composition and structure of the nanocomposites and the functional properties. Finally, the main properties of these materials are discussed in view of the thermal, mechanical, and self-healing properties, along with the potential applications in tissue engineering, thermal management, drug delivery and water treatment.

4.
Int J Pharm ; 594: 120115, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359668

RESUMO

Topical photodynamic therapy (PDT) is widely used to treat non melanoma skin cancers. It consists of topically applying on the skin lesions a cream containing a prodrug (5-aminolevulinic acid (5-ALA) or methyl aminolevulinate (MAL)) that is then metabolized to the photosensitizer protoporphyrin IX (PpIX). Light irradiation at PpIX excitation wavelength combined with oxygen then lead to a photochemical reaction inducing cell death. Nevertheless, this conventional PDT treatment is currently restricted to superficial skin lesions since the penetration depth of the prodrug is limited and hampers the production of PpIX in deep seated lesions. To overcome this problem, dissolving microneedles (MNs) included in a square flexible patch were developed. This easy-to-handle MN-patch is composed of 5-ALA mixed with hyaluronic acid (HA) and has the ability to dissolve after skin application. To evaluate the efficiency of this MN-patch in vivo, a skin lesion model has been developed on rats by applying UV-B illuminations. After 40 UV-B illuminations, histological and pharmacokinetic controls confirmed that the rats presented skin lesions. Once the rat skin lesion model has been validated, it was demonstrated that the MNs penetrated into the skin and fully dissolved in one hour on most of the rats. After one hour, the fluorescence images showed that the MN-patch produced a consequent and homogeneous level of PpIX. Overall, the dissolving MN-patch is a recent technology that has interesting features and several preclinical investigations should be led to compare its efficiency to that of the conventional treatment for PDT of non melanoma skin cancers.


Assuntos
Ácido Aminolevulínico , Fotoquimioterapia , Administração Cutânea , Animais , Fármacos Fotossensibilizantes/uso terapêutico , Ratos , Pele
5.
Int J Pharm ; 586: 119554, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32652182

RESUMO

Photodynamic therapy induced by protoporphyrin IX (PpIX) is widely used to treat precancerous skin lesions. The penetration depth of the prodrug 5-aminolevulinic acid (5-ALA) using topical application is currently limited, which hampers the production of PpIX in deep seated lesions. To enhance 5-ALA delivery in deep skin layers, a soluble microneedles patch (MN-patch) containing 5-ALA has been successfully developed by using a fast solvent casting molding method which could be easily up-scaled. The shape, number and height of the needles have been designed according to the medical application and the mechanical strain necessary for skin insertion. Hyaluronic acid (HA) has been chosen as the needle materials due to its biocompatibility, fast solubility and biodegradation and was mixed with 5-ALA prior to casting. HA-based MN-patch containing 5-ALA have exhibited mechanical properties enabling a good insertion into the skin without significant damages to MN. Interactions between HA and 5-ALA were evaluated by Fourier transform infrared spectroscopy (FTIR) and carbon nuclear magnetic resonance (13C NMR), stability of 5-ALA in the MN-patch was monitored by proton nuclear magnetic resonance (1H NMR) and exhibited a good stability over 5 months after manufacturing. Dissolution rate of the whole patch was completed in 1 hour in ex vivo rat skin without cytotoxicity. Overall, the MN-patch can be a promising technique to enhance 5-ALA penetration and produce PpIX in deeper skin lesions.


Assuntos
Ácido Aminolevulínico/administração & dosagem , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Fármacos Fotossensibilizantes/administração & dosagem , Administração Cutânea , Ácido Aminolevulínico/química , Animais , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Agulhas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Pró-Fármacos , Protoporfirinas/metabolismo , Ratos , Pele/metabolismo , Solubilidade
6.
J Photochem Photobiol B ; 197: 111544, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31295716

RESUMO

Photodynamic therapy (PDT) induced by protoporphyrin IX (PpIX) has been widely used in dermatological practices such as treatment of skin cancers. Clearance rate depends on different factors such as light irradiation, skin oxygenation and drug penetration. The poor penetration of 5-aminolevulinic acid (5-ALA) with topical application is limited and restrains the production of PpIX which could restrict PDT outcomes. This review will focus on techniques already used to enhance drug penetration in human skin, and will present their results, advantages, and drawbacks. Chemical and physical pretreatments will be discussed. Chemical pre-treatments comprise of drug formulation modification, use of agents that modify the heme cycle, enhance PpIX formation, and the combination of differentiation-promoting agent prior to PDT. On the other hand, physical pretreatments affect the skin barrier by creating holes in the skin or by removing stratum corneum. To promote drug penetration, iontophoresis and temperature modulation are interesting alternative methods. Cellular mechanisms enrolled during chemical or physical pretreatments have been investigated in order to understand how 5-ALA penetrates the skin, why it is preferentially metabolized in PpIX in tumour cells, and how it could be accumulated in deeper skin layers. The objective of this review is to compare clinical trials that use innovative technology to conventional PDT treatment. Most of these pretreatments present good or even better clinical outcomes than usual PDT.


Assuntos
Fármacos Fotossensibilizantes/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/uso terapêutico , Composição de Medicamentos , Humanos , Lipossomos/química , Micelas , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/química , Protoporfirinas/metabolismo , Protoporfirinas/uso terapêutico , Neoplasias Cutâneas/patologia
7.
Acta Biomater ; 74: 312-325, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29777958

RESUMO

Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 µmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-ß, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE: The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-ß, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.


Assuntos
Resinas Acrílicas , Hidrogéis , Óxido Nítrico , Polietilenos , Polipropilenos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Animais , Citocinas/biossíntese , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Camundongos , Micelas , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Polietilenos/química , Polietilenos/farmacocinética , Polietilenos/farmacologia , Polipropilenos/química , Polipropilenos/farmacocinética , Polipropilenos/farmacologia , S-Nitrosoglutationa/química , S-Nitrosoglutationa/farmacocinética , S-Nitrosoglutationa/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
8.
Expert Opin Drug Deliv ; 14(11): 1293-1303, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28132527

RESUMO

INTRODUCTION: Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.


Assuntos
Sistemas de Liberação de Medicamentos , Suturas , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...